RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [BATCH 2015-18] B.A./B.Sc. SECOND SEMESTER (January – June) 2016 Mid-Semester Examination, March 2016

Date : 17/03/2016

CHEMISTRY (Honours)

Time : 11 am – 1 pm

Paper : II

Full Marks : 50

[Use a separate Answer Book for each group]

<u>Group – A</u>

Answer <u>any one</u> question :

Answer any one question :						
<u>Group – B</u>						
	c)	Proof the identity relation $[A, BC] = [A, B]C + B[A, C]$.	[2]			
	b)	Find out the value for $[p_x, x]$. (Both are operators)	[2]			
4.	a)	What are the conditions for a well-behaved functions? Also state whether $\psi = ae^{-bx}$ is acceptible as well-behaved or not. Why?	2+2]			
	c)	Determine whether the function $\psi = \sin(xe^{ax})$ is an eigenfunction of the operator $\frac{d^2}{dx^2}$.	[2]			
	b)	A microscope using photons is employed to locate an electron in an atom to within a distance of 0.2 Å. What is the uncertainty in the velocity of the electron located in this way?	[3]			
3.	a)	An x-ray photon of initial energy 1.0×10^5 eV travelling in the +X direction is incident on a free electron at rest. The photon is scattered at right angles into the +Y direction. Find the components of momentum of the recoiling electron.	[3]			
Answer <u>any one</u> question :						
	c)	Calculate the change of entropy when 1 mole of water freezes to ice at 0°C, 1 atm pressure (mention all the arguments that your answer is based on).	[3]			
	b)	Comment whether ΔS will have same/greater/lesser than the value obtained for reversible process, has the process been carried out irreversibly.	[2]			
		$\Delta S = C_v \ln \frac{T_f}{T_i} + R \ln \frac{V_f}{V_i}.$	[3]			
2.	a)	Prove that for an ideal gas for a reversible change of state (T_i, V_i) to (T_f, V_f)				
	c)	Starting from Clausins Inequality prove that the entropy of the universe increases with time.	[2]			
	b)	Write down the thermodynamic definition of entropy.	[4] [2]			
1.	a)	Show that the efficiencies of all reversible engines working between same two temperatures are	Г <i>4</i> 1			

5. a) Draw energy profile diagram indicating starting material, transition states, intermediate and product for the reaction given below which shows no primary kinetic isotope effect $\binom{K_{\rm H}}{K_{\rm D}} \approx 1$.

$$ArH + NO_{2}^{+} \underbrace{K_{1}}_{K_{-1}} Ar^{+} \bigvee_{NO_{2}}^{H} \underbrace{K_{2}}_{NO_{2}} \rightarrow ArNO_{2} + H^{+}; K_{2} \gg K_{-1}$$
[3]

b) Explain the following observation :

c) Indicate the relative acidity of three different kinds of aliphatic protons in the following compound. Explain. [3]

6. a) Arrange the following compounds in order of increasing acidity. Justify your answer. [3]

b) Which one of the following is more acidic and why?

c) Sulphonation of naphthalene at 80°C gives naphthalene-1-sulphonic acid as the major product, while at 160°C the major product is naphthalene-2-sulphonic acid. Explain with a suitable energy profile diagram.
 [3]

Answer any one question :

7. a) Carry out the following conversions. Give mechanism.

i) $(R) - 2 - phenylethanol \longrightarrow (R) - 2 - phenylethylchloride$

b) Predict the product(s) of the following reactions. Give mechanism.

i)
$$Me \xrightarrow{DMSO} DMSO$$

ii)
$$\bigcup_{CH_2}^{O-CH_3} \xrightarrow{HI}$$

Η

8. a) Compare the S_N^{-1} reactivity of the following compounds :

MeO
$$\sim$$
 Cl and O₂N \sim Cl [2]

[2]

[2]

[2×2]

[2×2]

		Me - CH = CH - CH ₂ Cl and Me - CH - CH = CH ₂ . Cl				
	c)	Which one of the following is a better nucleophile? Justify your answer. [i) MeS ⁻ or MeO ⁻ in DMSO [2×2]			
		ii) LiCl or $Bu_4 \overset{+}{N}Cl^-$ in acetone.				
<u>Group – C</u>						
Answer <u>any one</u> question :						
9.	a)	Explain :[i) Atomization energy (KJ/mol) of lithium (161) is higher than Na (108).[ii) $-\Delta H_f$ (KJ/mol) of LiF (612) > NaF (569) while that of Lil (271) < NaI (288).	2+2]			
	b) c)	Discuss the structural similarity of basic beryllium acetate and basic beryllium nitrate. State, with equation, what will happen when dilute aqueous potassium salt solution is treated with sodium cobaltinitrite solution in acetic acid medium.	[3] [2]			
10.	a)	Explain : [2+2]			
	b) c)	 i) Solubility of BeO increases in aqueous BeSO₄ solution. ii) Golden yellow flame of sodium shows doublet structure. Reduction potential of Li⁺/Li (-3.05V) is highest of the Group-1 elements and that of Be²⁺/Be (-1.85V) is lowest of the Group-2 elements – rationalize. Compare the stability of complexes of the alkali metal ions with 18-crown-6 ether and explain 	[2]			
		the variation.	[3]			
Answer <u>any one</u> question :						
11.	a)	$SbCl_6^{3-}$ and $TeCl_6^{2-}$ is regular octahedral where as XeF_6 is distorted octahedral, explain with	[2]			
	b)	Write Born Lande equation and explain all the terms.	[3]			
	c)	Formation of divalent cation and anion are endothermic yet MgO is a stable ionic solid,				
	d)	comment. Comment on the thermal stability of BeO, MgO, CaO, SrO, BaO.	[2] [1]			
12.	a)	What is proton affinity? Starting from gaseous N_2 , H_2 and Cl_2 construct the Born Haber cycle for the formation of NH_4Cl and from the given data calculate the proton affinity of NH_3 .				
		Bond dissociation enthalpies, ΔH_{diss}^{o} : H_2 436(D ₁); Cl ₂ 242 (D ₂)				
		Standard enthalpy of formation, ΔH_{f}° : NH_{3} : -46; $NH_{4}Cl$: -314				
		Lattice energy of NH_4Cl : -683				
		Ionisation enthalpy of H(I) : 1310 ; ΔH_{EA}° of CI = - 348	0 - 01			
			2+2]			
	b)	Comment on the shape of CH_3 and CF_3 .	[2]			
	C)	with an example explain the exception of Bent's rule.	[2]			

b) Ethanolysis of the following two compounds gives same product mixture. Justify.

[2]

_____ × _____